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5 Pure Component Solubility Parameters 

5.1 Hildebrand Solubility Parameters – Pure CO2 

In his high pressure gas chromatography work, Giddings259 recognized that gases 

subjected to high pressures, where densities approach those of liquids, acquire solvent 

properties much like liquids (see Table 2-1).  This similarity with liquid solvents led 

Giddings to develop a corresponding states approach, based on Hildebrand’s (liquid) 

solubility parameter concept. 

 

5.1.1 Giddings Approximation 

Hildebrand and Scott,260 developed a relationship between the solubility 

parameter and the critical pressure, Pc, from the equality of eqn (4-18), when n =1, eqn. 

(4-15), and eqn. (4-21). 
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where a is known as the van der Waals attraction parameter and the volume, V, is 

identified with van der Waals parameter b  This determination of V was originally 

proposed by van Laar,261 who assumed that liquids not significantly expanded could be 
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approximated by the minimum volume according to the van der Waals equation, namely 

the parameter b, 262  

 
b
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=δ  (5-2) 

Expressing the van der Waals parameters a and b in terms of critical properties, 
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However, Hildebrand found that to obtain satisfactory agreement with directly measured 

values of ( )VTP ∂∂ , referred to by Hildebrand as the “thermal pressure coefficient”,263 

the numerical constant 27 should be replaced with 1.25, so that 

 2/125.1 cP=δ  (5-5) 

where Pc is the critical pressure in atmospheres and δ is in (cal/cm3)1/2.  

Hildebrand264 compared the accuracy of eqn. (5-5) with solubility parameter 

values calculated from eqn. (5-1) and eqn. (5-77) (reviewed later in this chapter). The 

result of his comparison is reproduced in Table 5.1. 
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Table 5-1. Comparison of solubility parameter equations. 

Substance Eqn. (5-77) 
2/1






 −∆Η≅
m

V

V
RTδ  

V 
(L) 

a 
(liter2 
atm) 

Eqn. (5-1) 

V
a 2/1

≅δ  

Pc 

(atm) 

Eqn. (5-5) 
2/125.1 cP=δ

 

n-Hexane 7.3 132 24.4 5.8 29.5 6.8 
Ethyl ether 7.5 105 17.4 6.2 35.5 7.4 

Cyclohexane 8.2 109 22.8 6.8 40.4 8.0 
Carbon 
tetrachloride 

8.6 97 20.4 7.2 45.0 8.4 

Benzene 9.15 89 18.0 7.4 47.7 8.6 
Chloroform 9.3 81 25.4 9.7 65.8 10.1 
Carbon 
disulfide 

10.0 61 11.6 8.7 76 10.9 

All values were determined at 25°C; δ units in cal1/2 cm-3/2. 
 
As can be seen from the table, the approximate ranking of the solvents according to 

solubility parameter value is retained, but the numerical values for individual substances 

differ considerably.   

 Giddings followed the development of Hildebrand and Scott, but instead of using 

the van Laar assumption, eqn. (5-2), he substituted van der Waals’ constants and used 

reduced variables, 
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and 
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Giddings then adopted Hildebrand’s empirical constant of 1.25 in place of 3 , 

 rcP ρδ 2/125.1=  (5-8) 

Giddings extended this equation, strictly applicable only to liquids, to 

supercritical fluids by assuming the equivalence of gases and liquids at a common 

density.  This equivalence says simply that the solubility parameter remains a simple 

linear function of density in the liquid, gas, and supercritical fluid regions.  That is, 

density changes smoothly and continuously as you trace a path, shown in Figure 5-1, 

from the liquid region, around the critical point (in the supercritical fluid region), and into 

the gas region. 

 

Figure 5-1.  Schematic illustration of the continuous change in fluid density on going 
from a liquid, to a supercritical fluid, to a gas. 
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This corresponding states assumption leads to the following equation for 

describing the solubility parameter of a fluid, applicable to the liquid, supercritical, or gas 

state 
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where ρr(liq) is reduced density of the liquid phase at its normal boiling point.  Giddings 

made an analysis of some fluids “commonly used as chromatographic stationary phases” 

and determined an average value of 66.2, =liqrρ , so that, 
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Equation (5-10) has become the most widely used method to calculate the (1-

component) solubility parameter for supercritical fluids.265,266,267,268  Unfortunately, little 

or no experimental verification of relations such as the one presented by Giddings exists, 

and hence their accuracy cannot be assessed.  This type of empirical correlation, 

however, is expected to be less accurate for fluids that are gases at room temperature and 

pressure and for polar and/or hydrogen bonding fluids where specific interactions occur. 

The liquid solvents evaluated by Giddings to arrive at the value liquid

rρ  = 2.66 are 

unknown. In Tables 5-2, 5-3, and 5-4, values of 
C

BPatmliquid
r ρ

ρρ 1=  are given for a range 

of fluids, including those which are gases and liquids at room temperature and pressure 
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(RTP).  CO2 sublimates from a gas to solid phase at 25oC and 1 atm, and therefore 

boiling point data are not available, at the stated conditions, for this compound.  

Table 5-2.  Reduced density of (gaseous) fluids at the normal boiling point. 

Fluid 
(Gas at RTP) Cρ  

(g/cm3) 
BPatm1ρ  

(g/cm3) c

BPatm
ρ

ρ   1  

Sulfur Dioxide 0.524 1.462 2.79 
Argon 0.536 1.39 2.59 
Nitrogen 0.311 0.808 2.60 
Helium 0.0696 0.125 1.80 
Krypton 0.9085 2.412 2.65 
Hydrogen 0.031 0.0708 2.28 
Oxygen 0.436 1.141 2.62 
Methane 0.1625 0.4241 2.61 
Propane 0.225 0.582 2.59 

Average = 2.50 
 

Table 5-3.  Reduced density of (liquid) fluids at the normal boiling point. 

Fluid 
(Liquid at RTP) Cρ  

(g/cm3) 

BPatm1ρ  

(g/cm3) c

BPatm
ρ

ρ   1  

n-Pentane 0.232 0.609 2.63 
Benzene 0.3063 0.818 2.67 
Toluene 0.291 0.779 2.68 
Acetone 0.2683 0.745 2.78 
Acetic acid 0.351 0.911 2.60 
Formic acid 0.4322 1.059 2.45 
Acetonitrile 0.2373 0.708 2.98 
p-Dioxane 0.369 0.936 2.54 
Pyrrolidine 0.2856 0.793 2.78 
Pyridine 0.3268 0.889 2.72 
Aniline 0.340 0.868 2.55 

Average = 2.67 
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Additional errors will likely arise when empirical relations designed for pure fluids are 

used to calculate the solubility parameter for fluid mixtures, particularly if one or more of 

the components is highly polar. 

 

Table 5-4.  Reduced density of (polar liquid) fluids at the normal boiling point. 

Fluid 
(Polar Liquid at 

RTP) 

Cρ  

(g/cm3) 
BPatm1ρ  

(g/cm3) c

BPatm
ρ

ρ   1  

Methanol 0.2715 0.75 2.76 
Phenol 0.4104 1.16 2.83 
Isopropyl alcohol 0.2735 0.713 2.61 
Ammonia 0.235 0.683 2.91 

Average = 2.78 
Overall Average of All Fluids = 2.63 

 
 

5.1.2 Thermodynamic Equation of State 

 As previously discussed, Hildebrand derived an approximation of the internal 

pressure, calling this approximation the cohesive energy density, by assuming a particular 

volume dependence of E (see eqn. (4-16)). 
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but from the thermodynamic equation of state, eqn. (4-11) 
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so that 
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Total (1-component) solubility parameters can therefore be calculated using an equation 

of state (EOS) of the form, P = f(ρ,T).  This approach has been used in this work to 

calculate the total solubility parameter for pure CO2, using the empirical EOS of Huang 

et al.269 
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Table 5-5.  Huang equation of state constants, Ci. 

i Ci i Ci 
1 0.376194 15 -2.79498 
2 0.118836 16 5.62393 
3 -3.04379 17 -2.93831 
4 2.27453 18 0.988759 
5 -1.23863 19 -3.04711 
6 0.250442 20 2.32316 
7 -0.115350 21 1.07379 
8 0.675104 22 -0.599724 × 10-4 
9 0.198861 23 0.885339 × 10-4 
10 0.216124 24 0.316418 × 10-2 
11 -0.583148 25 10 
12 0.119747 × 10-1 26 50 
13 0.537278 × 10-1 27 80,000 

14 0.265216 × 10-1   

and, 

 

 






 +=






 ++=





 +=







 ++=






 ++=






=





 +++++=

'
13

125

5'
20

4'
19

3'
18

8'
11

104

5'
17

4'
16

3'
15

72'
9

'
8

73

'
14

65'
6

4'
5

3'
4

2'
3

'
2

12

                                              ;

                                      ;

          ;

T
c

cb

T
c

T
c

T
c

b
T
c

cb

T

c

T

c

T

c
b

T

c

T

c
cb

T
c

b
T
c

T
c

T
c

T
c

T
c

cb

 (5-16) 

 These equations and the appropriate derivatives (presented in the Appendix A) 

have been written into a computer program and CO2 solubility parameters have been 

calculated over the temperature and pressure range for which the EOS is stated to be 

valid (220 K ≤ T ≤ 420 K, and 1 atm ≤ P ≤ 600 atm).  Figure 5-2 is a plot of the resulting 

solubility parameters.   
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Figure 5-3 is a contour plot comparison of CO2 solubility parameter values 

calculated with Giddings approximation, eqn. (5-10), versus CO2 solubility parameter 

values calculated from the CO2 equation of state eqn. (5-14) and eqn. (5-13).  Values on 

the contour plot lines represent values of 



EOSfrom

Giddingsfrom
δ

δ .  In the 

supercritical fluid region (identified by the dashed lines), the solubility parameters 

obtained from Giddings’ approximation are 10 to 20 % greater than those calculated from 

the EOS. Similarly, in the low-temperature gas region, Giddings’ equation 

underestimates the true solubility parameter by about 15%.  
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Figure 5-2.  Total (1-component) solubility parameter of pure CO2, calculated using 
eqns. (5-13) and (5-14). 
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5.2 3-Component (Hansen) Solubility Parameters – Pure CO2 

While the thermodynamic equation of state method gives an accurate representation 

of the total (1-component) solubility parameter for CO2 over a range of temperatures and 

pressures, we have seen that the (Hildebrand) 1-component model does not accurately 

predict the solubility behavior of a real fluid. We need to be able to express the solubility 

behavior of CO2 in terms of 3-component (Hansen) Solubility Parameters (δd, δp, δh). 

Extending the HSP methodology to supercritical fluids would significantly enhance the 

understanding of their solvent properties; however, no such studies appear to have been 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3. Contour plot comparison of Giddings solubility parameter approximation 
(eqn. 5-10) versus equation of state solubility parameter calculation (eqn. 5-13) for CO2. 
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done.  For strictly nonpolar gases (gases with no permanent dipole or higher moments, 

such as argon), the values of δp and δh will be zero, and we could equate δd with the total 

solubility parameter, δTotal.  However, CO2, which posses a large quadrupole moment and 

can display Lewis acid-base characteristics, has non-zero values for both δp and δh.270 

Determination of HSP’s for (ambient condition) gases is usually based on room 

temperature solubility of the gas in different liquids of known  δd, δp, and δh. .  Those 

liquids that show the highest solubility for the gas are assumed to have HSP’s closer to 

those of the gas than those liquids which have lower solubilities for CO2.  In the 

following section, published data of CO2 gas solubility (at 25 oC and a CO2 partial 

pressure of 1 atmosphere) in a large number of liquid solvents is evaluated.  From this 

data, a set of HSP values at a particular temperature and pressure can be determined.  

HSP values at other pressures and temperatures will be based on this set of HSP values, 

using pressure and temperature derivative functions, which will be derived subsequently. 

 

5.2.1 Optimized CO2 HSP Values from Published Solubility Data 

Published CO2 solubility data at 25oC and 1 atmosphere partial pressure of CO2 

in various liquid solvents are collected in Appendix B.  CO2 HSP values were calculated 

based on a simple weighted average, 
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using the entire data set of 101 solvents, hereafter called data set #1, as well as the subset 

of data where the measured CO2 solubility was greater than the ideal solubility at 25 oC 

and 1 atmosphere, ideal
COx 2  = 0.0229 (CO2 ideal solubility development is included in the 

Appendix B). This subset of data, hereafter called data set #2, is comprised of 10 

solvents.   

These analyses resulted in the following HSP values for CO2 at 25oC 

 Data set #1: δd = 16.4 MPa1/2 
  δp = 5.5 MPa1/2 
  δh = 5.8 MPa1/2 
 
 Data set #2: δd = 15.6 MPa1/2, 
  δp = 5.2 MPa1/2 
  δh = 5.8 MPa1/2 
 

The experimental CO2 solubilities and HSP values for the solvents included in 

data set #2 are shown in Table 5-6, while the values for data set #1 are given in 

Appendix B. 
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A second approach, known as the solubility sphere,271,272,273 was also used to 

evaluate the published solubility data.  The solubility sphere approach is essentially a trial 

and error method, whereby all the “good” solvents are included within the sphere and all 

the “bad” ones are excluded, and the radius of this sphere is known as the interaction 

radius, or Ro.  The criterion of  “good” versus “bad” can vary, based on the interaction 

being studied.  This can include percentage polymer swelling, dissolution, breakthrough 

times, permeation coefficients higher than a given value, long-time suspension of a 

pigment, etc.  Based upon the criteria selected, spheres are then produced for three plots, 

δd vs. δp, δd vs. δh, and δp vs. δh, and the sphere radius Ro is adjusted until an identical 

radius for each of the three plots can be found which incorporates the “good” interactions 

Table 5-6. CO2 solubility, and HSP values for the solvents included in Data Set #2. 

Solvent 
Exptl
COx

2
 

δδd 
(MPa)1/2 

δδp 
(MPa)1/2 

δδh 
(MPa)1/2 

Tributyl phosphate, 
(C12H27O4P) 0.03550 16.3 6.3 4.3 
Amyl acetate, 
(C7H14O2) 0.02800 15.8 3.3 6.1 
Butyl oleate, 
(C22H42O2) 0.02790 14.7 3.4 3.4 
Tetrahydrofuran 
(C4H8O) 0.02700 16.8 5.7 8.0 
Methyl oleate 
(C19H36O2) 0.02690 14.5 3.9 3.7 
Isobutyl acetate 
(C6H12O2) 0.02500 15.1 3.7 6.3 
Methyl ethyl ketone 
(C4H8O) 0.02444 16.0 9.0 5.1 
Propyl acetate 
(C5H10O2) 0.02429 15.3 4.3 7.6 
Ethyl acetate 
(C4H8O2) 0.02300 15.8 5.3 7.2 
Methyl acetate 
(C3H6O2) 0.02253 15.5 7.2 7.6 
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and excludes the “bad” interactions.  Using this approach, other solvents or compounds 

of interest can be screened to determine if they are within the interaction radius, Ro, and 

therefore appropriate (“good”), or inappropriate (“bad”) for the application they are being 

considered.  This type of evaluation or predictability is aided by an equation developed 

by Skaarup for determining the distance, Ra, between two materials based on their 

respective HSP values, 274 

   ( ) ( ) ( ) ( )2
12

2
12

2
12

2 4 hhppddRa δ−δ+δ−δ+δ−δ=  (5-20) 

where δd2, δp2,  and δh2 are associated with a given solvent and δd1, δp1, and δh1 with the 

center of the solubility sphere. This equation was developed from plots of experimental 

data where the constant “4” was found convenient and correctly represented the solubility 

data as a sphere encompassing the good solvents.   Figure 5-4 is a schematic 

representation of this approach. 
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Figure 5-4.  Interaction radius, where Ro incorporates all “good” solvents and excludes 
all “bad” solvents. 
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For this evaluation, “good” was defined as solvents with the CO2 solubility 

greater than ideal and “bad” were those solvents where the CO2 solubility is less than 

ideal.  It is clear that for cases where CO2 solubility is greater than ideal (where the 

(attractive) CO2/solvent interactions are greater than solvent/solvent interactions) Ra 

should be less than Ro.  A convenient index for relative “goodness” of a solvent is the 

ratio Ra/Ro, which has been called the relative energy difference (RED) number 

 Ro
RaRED =  (5-21) 

For an individual solvent, an RED less than 1 indicates high affinity, while an RED value 

close to 1 is a boundary condition (between “good” and bad”). Progressively higher RED 

numbers indicate progressively lower affinities.275  Computing Ra from eqn. (5-20) and 

the RED from eqn. (5-21) allows for easy scanning of large data sets, such as the 101 

solvents in data set #1 used for the HSP optimization.  The solubility spheres optimized 

for data set #1 and data set #2 with the two HSP center points are shown in Figures 5-5a, 

b, and c.  As can be seen from these spheres, an interaction radius Ro = 4.0 for data set #2 

incorporates the “good” solvents as defined, whereas for data set #1, an interaction radius 

Ro = 4.7 is necessary to incorporate the “good” solvents.  In addition, the solubility 

sphere for data set #1 results in the inclusion of 7 “bad” solvents (2-

Methylcyclohexanone, cyclohexanone, oleic acid, dichloromethane, trichloromethane, 

propylene bromide, and 1,2-dibromoethane) whereas the sphere generated for data set #2 

results in the inclusion of only 1 “bad” solvent (oleic acid), for which the high CO2 

solubility may be a result of a chemical reaction with CO2, similar to the type of reaction 

described in Section 2.2.  In terms of the Sphere technique, occurrences of “good” 
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solvents falling outside of the sphere radius, and “bad” solvents falling inside the sphere 

radius are known as errors and can be viewed as an indication of the “goodness” of the 

fit.  The Excel spreadsheet of RED calculations is given in Appendix B. 

 Literature Ro values for the polymers evaluated in Chapter 6 are reportedly based 

on the dissolution behavior of the respective polymers in a range of liquid solvents.  

These Ro values will be identified in this work by liq
oR .  
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Figure 5-5.  Solubility sphere plots of CO2 in organic solvents. (a) δh versus δd, (b) δp

versus δd, and (c) δh versus δp. 
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Using the optimization routines to identify CO2 HSP points and then the 

solubility sphere as a graphical representation of “good” and “bad” solvents, it has been 

determined that the set of HSP’s optimized from data set #2, 

 
2/1

h

2/1
p

2/1
d

MPa8.5
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=

=

=

δ

δ

δ

 (5-22) 

best characterize CO2 at T = 25oC.  The rational of this choice is further supported by 

problems noted by Hansen,276 who notes the approach of using all solvents to establish 

the center of a solubility sphere results in this sphere boundary (and center) being 

determined by the poor solvents or nonsolvents, rather than the best solvents in the 

middle. 

 It is next necessary to establish a pressure corresponding to this T = 25oC set of 

HSP values in order to use them to determine HSP’s at arbitrary conditions of T and P. 

From eqn. (4-27), the determined HSP values for CO2 result in a total CO2 solubility 

parameter of 17.4 MPa1/2, 

 ( ) ( ) ( )
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2222
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04.3048.52.56.15
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MPa

 hpdT

=

=++=

++= δδδδ

 (5-23) 

The PVT equation of state, which calculates total CO2 solubility parameters 

(Section 5.1.2) was used to determine the combination of pressure and molar volume 

corresponding to T = 25oC and Tδ  = P
T
P

V

−








∂

∂
 = 17.4 MPa1/2, which gave 
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5.3 Temperature and Pressure Effects 

Both temperature and pressure will influence total solubility parameters.  

However, other than Giddings’ extension of the 1-component (Hildebrand) solubility 

parameter model to supercritical fluids (Section 5.1.1), there appears to be no published 

reports on methods to calculate total solubility parameters as a function of pressure, and 

only limited reports on the calculation of solubility parameters as a function of 

temperature.277,278,279  Generally, an increase in pressure at constant temperature will 

increase the total solubility parameter through an increase in the solvent density.  

Similarly, an increase in temperature at constant pressure will decrease the total solubility 

parameter.  Both of these trends can be seen in Figure 5-2, where the total CO2 solubility 

parameter, calculated using eqns. (5-13) and (5-14), is seen to be similar in appearance to 

the PVT surface, shown in Figure 2-3, illustrating the predominant dependence of 

solubility parameter on density. 

The temperature and pressure dependence of individual HSP’s, as a function of 

temperature and pressure, has apparently not been evaluated for any liquid, gas or 

supercritical fluid.  An approximate approach for this calculation is outlined in the 

following Sections, where the temperature derivatives, originally derived by Hansen and 

Beerbower,280 are verified.  Pressure derivatives, not found in any literature search, are 
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derived in a manner parallel to the temperature derivatives.  In addition, integrals forms 

are developed 

 

5.3.1 Temperature and Pressure Effects on HSP’s : δδd 

From Section 4.2.3, the dispersion solubility parameter, δd, was defined as 

 
V

Ed
d =δ 2  (5-25) 

where Ed is the dispersion, or nonpolar, contribution to the total cohesive energy, E.  

Hildebrand, in his 1950 work, discusses the effect of temperature on solubility parameters 

by recalling the expression for the dependence of E on the volume281  

 
nV

k
E −=  (5-26) 

where k is a constant dependent upon the nature of the particular liquid and n is about 1.5 for 

normal liquids.  Substituting eqn. (5-26) into Hansen’s definition for the dispersion 

solubility parameter, eqn. (5-25), 
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so that 
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The change in δd produced by a change in volume can be calculated by taking the partial 

derivative of eqn. (5-28) with respect to volume at constant temperature and pressure, 
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and 
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Equation (5-30) can now be differentiated for either a change in temperature or pressure, or 

integrated.  The partial derivatives will be discussed first, followed by the integration of 

eqn. (5-30). 

 The partial derivative of δd with respect to temperature at constant pressure is 
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The isobaric coefficient of thermal expansion, α, is defined by 
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so that by combining eqn. (5-31) and eqn. (5-32),  
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The same type of derivation can be performed to generate an expression for the change in δd 

with respect to pressure at constant temperature: 
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The isothermal compressibility, β, is defined by 
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so that by substituting eqn. (5-35) into eqn. (5-34), 
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The integrated form of eqn. (5-30) is obtained by integrating between the limits of an 

initial reference state δdref , Vref (at Pref and Tref), to some new δd , V (at P and T), 
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and 

 ( )VVrefddref lnln25.1lnln −−=− δδ   (5-38) 
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5.3.2 Temperature and Pressure Effects on HSP’s: δδp 

From Section 4.2.3, the polar solubility parameter, δp, was defined as; 

 
V

E p
p =δ 2  (5-41) 

where Ep is the polar contribution to the total cohesive energy.  The first values of δp were 

assigned by Hansen and Skaarup using the Böttcher equation, as described in 

Section 5.4.2.2.1, 
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A simplified equation was later developed by Hansen and Beerbower,282 

 
21

437
/p V

. µ
=δ     [ ]2/1MPa  (5-43) 

where µ is the dipole moment.  This equation is utilized for determining the change in δp 

with respect to either temperature at constant pressure or with respect to pressure at constant 



 5-86 
 

temperature.  First, the partial derivative of eqn. (5-43) with respect to volume at constant 

temperature and pressure is determined, 
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and 
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Equation (5-45) can now be differentiated for either a change in temperature or pressure, or 

integrated.  Differentiating δp with respect to temperature at constant pressure, 
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Substituting in the isobaric coefficient for thermal expansion, α, 
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A similar derivation can be performed to calculate the change in δp due to pressure at 

constant temperature,  
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and substituting for the isothermal compressibility, β, 
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The integrated form of eqn. (5-45) is  
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so that by integrating, we have 
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5.3.3 Temperature and Pressure Effects on HSP’s: δδh 

In Hansen’s early work, the hydrogen bonding parameter was almost always found 

by subtracting the polar and dispersion energies of vaporization from the total energy of 

vaporization.  This is still widely used where the required data are available and reliable.  

Hansen,283 however, while noting that “there is no rigorous way of arriving at values of the 

temperature dependence of the hydrogen bonding solubility parameter”, developed an 

empirical approach for the determination of the temperature dependence of δh which 
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involves experimental heats of vaporization data for hydrogen-bonded substances, which, in 

turn, are taken from Bondi.284  

From Section 4.2.3, the hydrogen bonding solubility parameter, δh, was defined as 
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h =δ 2  (5-54) 

so that 
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where Eh is the hydrogen bonding contribution to the total cohesive energy.  Differentiating 

eqn. (5-55) with respect to temperature at constant pressure, 
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Simplifying, rearranging terms and substituting in the isobaric coefficient of thermal 

expansion, β, 
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Bondi,285 through exploratory calculations, has shown that the difference between the 

heat of vaporization of a hydroxylic compound (a compound displaying strong hydrogen 

bonding) and that of its hydrocarbon (or other nonpolar) homomorph constitutes a good 

measure of hydrogen bond strength.  This work also discusses the decrease in the heat of 

formation of the hydrogen bond with increasing temperature.  Reference curves of 









dT
dEh were constructed286 for various functional groups and are shown in Table 5.7, 

along with experimentally derived values of hE .287 

Table 5-7.  Experimentally determined values of Eh and 







dT
dEh . 

Functional 
Group 

Hydrogen-bond parameter, 
Eh 

( )mole
cal  

dT
dEh  

( )Kmole
cal

⋅  

 OH (aliphatic) 4650 ± 400 -10 
 NH2 (aliphatic) 1350 ± 200 -4.5 
CN (aliphatic) 500 ± 200 -7.0 

COOH (aliphatic) 2750 ± 250 -2.9 



 5-90 
 

Averaging the rate of change of the hydrogen bond heat of vaporization with 

temperature ( dTdEh ), and dividing by the average excess heats of vaporization (heat of 

vaporization of the hydrogen bonding compound minus the heat of vaporization of its 

nonpolar homomorph) results in the following form of eqn. (5-57): 
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The change in the δh with respect to pressure at constant temperature is obtained by 

utilizing the relationship  
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Equation (5-58) can be rearranged to a form that can be easily integrated, 
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Upon integration of eqn. (5-63) from (δhref, Tref  and Vref) to (δ, T and V), 
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The total solubility parameter, incremented for small changes in temperature and 

pressure, can be calculated from eqns. (5-33), (5-36), (5-47), (5-49), (5-58) and (5-62) using  
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or from eqns. (5-40), (5-53) and (5-66) using 
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The derivative forms are summarized in Table 5.8 and the integrated forms in Table 5.9. 

 

Table 5-8.  Equations (derivative form) for the temperature and pressure effects on 
HSP’s. 
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Table 5-9.  Equations (integrated form) for the temperature and pressure effects on 
HSP’s. 
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Appendix C includes results of the equations summarized in Table 5-9 for CO2. 
 

5.4 Cosolvent Solubility Parameters 

5.4.1 1-Parameter Models (Hildebrand) 

As established for CO2, total (Hildebrand) solubility parameters can be 

determined for nonpolar and weakly polar solvents using an appropriate equation of state 

and equating the calculated internal pressure to the cohesive energy density (see eqn. (4-

17).  However, EOS data are often unavailable for compounds used as cosolvents or is 

available only over a very limited range of T and/or P.  In these cases, the total solubility 

parameter can be found from the isobaric coefficient of thermal expansion, α, and the 

isothermal compressibility, β, since it can be shown that 

 PT
V
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VT

−







⋅=









∂

∂

β

α
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where, as before, 

 
PT

V
V










∂

∂
=

1
α  and 

TP
V

V









∂

∂
−=

1
β  (5-70) 



 5-94 
 

An alternative method for calculating the total (Hildebrand) solubility parameter 

is based on equating the cohesive energy density to the heat of vaporization. 

The molar cohesive energy, E, can be divided into two parts:288 (1) the molar 

vaporization energy, required to vaporize a mole of the liquid to its saturated vapor (at 

constant volume), Egl ∆ , and (2) the energy, required to expand the saturated vapor to 

infinite volume at constant temperature; that is, the energy necessary to completely 

separate the molecules, Eg ∞∆ , so that 

 EEE ggl ∞∆+∆=  (5-71) 

The molar vaporization energy is related to the molar vaporization enthalpy, Hgl ∆ , by289 

 PVHE glgl −∆=∆  (5-72) 

Assuming ideal behavior for the vapor phase, so that RTPV = , 

 

 RTHE glgl −∆=∆  (5-73) 

The isothermal energy of expansion is related to the isothermal heat of expansion, i.e., the 

enthalpy change on isothermally expanding 1 mole of saturated vapor to zero pressure, 

Hg ∞∆ , by 

 VpHE sgg +∆=∆ ∞∞  (5-74) 
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where ps is the saturation vapor pressure at temperature T and V is the molar volume of 

the liquid. The molar cohesive energy can therefore be written as 

 VpRTHHE sggl +−∆+∆= ∞  (5-75) 

At pressures below 1 atmosphere Hg ∞∆  and psV are usually negligible,290 so that 

 RTHE gl −∆=  (5-76) 

and the total solubility parameter, ( ) 21 /

V
E , can therefore be written as 

 
21 /

V
RTH








 −∆
=δ  (5-77) 

where Hgl ∆  is identified with the molar heat of vaporization, H∆ . 

From eqn. (5-77), it can be seen that total solubility parameter values of liquids 

can be calculated from the molar volume and molar heat of vaporization, determined at 

temperature T.  It is usually possible to find a reliable value for the molar volume, but 

discrepancies frequently exist between reported values for H∆ , depending on whether 

the reported value is obtained experimentally, from calorimetric measurements, or by an 

estimation method.  Some of these estimation methods will now be discussed. 

The heat of vaporization is the difference between the enthalpy of the saturated 

vapor and that of the saturated liquid at the same temperature.  Most estimation methods 

for H∆  are based on the Clausius-Clapeyron equation,291 where it can be shown that H∆  

is related to the slope of the saturated vapor-pressure curve by 
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 (5-78) 

Here, Sp  is the saturation vapor pressure, and V∆  and Z∆  are the differences in the 

molar volume and compressibility factor of saturated vapor and saturated liquid, 

respectively.  Other empirical formulas relate H∆  at T to the heat of vaporization at the 

normal boiling point, Tb. Several variations of this type exist, including those due to 

Riedel,292  
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Chen,293 
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 (5-80) 

Vetere,294 
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and Hildebrand, 295 

 ( ) 2009.00.17 bbb TTmol
calH +=∆  (5-82) 

In eqns. (5-79) to (5-82), Pc and Tc refer to the critical pressure and temperature, 

respectively, and Tbr is the reduced boiling temperature ( )cb TT .  A number of other 

methods for estimating ∆H have been proposed, however none appear to offer significant 

advantages over those given above.   
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 A third correlation for the latent heat of vaporization as a function of temperature 

makes use of the fact that H∆  decreases continuously with temperature along the boiling 

line and vanishes at the termination of the boiling line, i.e., the critical point.  An early 

functional relationship proposed to express the variation of H∆  with T is the Watson 

equation296 
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2
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 (5-83) 

where subscripts 1 and 2 refer to temperatures 1 and 2.  A common choice of n is 0.375 

or 0.38.  Other variations of the Watson relation exist in the literature, with different 

functional forms for the temperature dependence. 

Despite the differences between values obtained from the various estimation 

methods, the molar vaporization enthalpies ( H∆ ) and the solubility parameters (δ) 

obtained from them generally do not differ too widely, and each of the variety of methods 

usually provides values that are acceptable for many purposes.  However this 

methodology will only be applicable below the critical temperature, as H∆ , as noted 

earlier, vanishes at Tc.   

 

5.4.2 Calculation of HSP’s 

The total cohesive energy density can also be subdivided into contributions from 

various types of molecular interactions.  In all cases, however, some approximations or 

assumptions are made, and the expressions resulting from these assumptions and 

approximations are not exact even for liquids, let alone polymers.  Rather, the 
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expressions are best considered as useful, empirical relations which have some theoretical 

foundation but which are chosen for their practical usefulness in particular situations.  

The most important situation where caution is required is where specific interactions 

within a component exist.  The most common of these, and the most problematic, is 

hydrogen bonding within a pure component.297 

 Methods to calculate individual HSP’s depend to a great extent on what data are 

available.  Commonly, a total solubility parameter is first determined from Hildebrand’s 

original 1-component solubility parameter model, using either eqn. (4-21) or eqn. (5-77).  

The general approach is then to calculate two of the three parameters, δd, δp, δh, from 

methods to be described below and to then obtain the third parameter by difference from 

the total solubility parameter. HSP values calculated this way are available in the 

literature for a large number of liquid solvents and polymers.298,299 

5.4.2.1 Dispersion Solubility Parameter, δδd 

5.4.2.1.1 Homomorph Method 

The initial approach to dividing the total solubility parameter into components 

representing dispersion, polar, and hydrogen bonding interactions was based on the 

homomorph concept and empirically on the basis of many experimental observations.300 

The dispersion component, ∆Ed, was calculated directly from the energy of vaporization 

of the nonpolar homomorph.  Following the additional recommendation that the 

homomorph should have the same molar volume as well as a similar structure to that of 

the polar compound, Blanks and Prausnitz301 published a homomorphic plot of the energy 

of vaporization for straightchain hydrocarbons against molar volume at various reduced 
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temperatures.  On the same basis, Weimer and Prausnitz302 prepared homomorph plots of 

the cohesive pressure against molar volume at various temperatures for normal alkanes, 

cycloalkanes, and aromatic hydrocarbons. Using the appropriate homomorph, E∆ , used 

to approximate ∆Ed, or the cohesive energy density (δd
2) as a function of molar volume 

and reduced temperature, is obtained.  The dispersion solubility parameter is then  

 
V
Ed

d

∆
=δ  (5-84) 

5.4.2.1.2 Index of refraction (nD) Correlation  

The main idea in this correlation is that the interaction energy between nonpolar 

molecules, due to van der Waals-London forces, is dependent on the polarizability (see 

eqn. (3-1)).303  The polarizability, in turn, is related to the refractive index, nD, by the 

Lorentz-Lorenz equation, 
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 (5-85) 

where N is the number of molecules per cubic centimeter (the Loschmidt number) and α 

is the average polarizability of the molecule.  Subsequently, Koenhen and Smolder304 

found a nearly linear relationship between δd and nD for 60 nonpolar and polar liquid 

organic solvents in the region of nD values  (1.3 < nD < 1.6).  

 
)(MPa     4.11n5.19

)cal/cm(    55.5n55.9
1/2

D

2/13
DD

−=

−=δ
 (5-86) 

The relation resulted in a correlation coefficient of 0.90 and a standard error of 0.32. 
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5.4.2.1.3 Group contribution method 

This method provides a quick estimate of the dispersion parameter (or polar or 

hydrogen bonding parameters) based on a summing of the dispersion (or polar or 

hydrogen bonding) contribution of individual structural units within the molecule, 

 
V

Fid
d

∑
=δ  (5-87) 

where Fid is the molar attraction constant for dispersion forces of a specific functional 

group i.  Molar attraction constants have been derived by Koenhen and Smolders,305 van 

Krevelen,306 and Hansen and Beerbower.307  A summary of these tables is presented in 

Barton.308  When using the group contribution method, it is essential to check that the 

molar attraction constants and cohesion parameter data from different literature sources 

are based on the same models and assumptions, and are therefore self-consistent. 

 

5.4.2.2 Polar Solubility Parameter, δδP 

5.4.2.2.1 Böttcher Equation  

Böttcher derived an empirical relation for calculating the contribution of 

permanent dipoles to the cohesion energy of a liquid or a gas.  This energy is given as W 

in eqn. (5-88).309 
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Hansen and Skkaarup310 equated ( )V
W  with δp to assign polar HSP values: 
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22
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2
112108 /

D
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P cm
caln

nV
µ+

+ε

−ε
=δ

 (5-89) 

The use of this equation requires the molar volume (V), dipole moment (µ), refractive 

index (nD), and the dielectric constant (ε) of the compound. 

 

5.4.2.2.2 Hansen/Beerbower Equation  

This equation is a simplified version of the Böttcher equation, eqn. (5-89), and has 

been used extensively by Hansen.311 

 ( ) 21

21
437 /

/P MPa
V

.
µ

=δ   (5-90) 

An extensive listing of dipole moments can be found in McClellan.312  It must be noted 

that 0=µ  (for nonpolar molecules) is not a sufficient basis to assign δp = 0.313 

 

5.4.2.2.3 Group Contribution Method 

When the dipole moment of a molecule is unknown, group contributions can be 

used to estimate δp: 

 
V

Fip

p

∑
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2

 (5-91) 
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Molar attraction constants have been derived by Koenhen and Smolders,314 van 

Krevelen,315 and Hansen and Beerbower.316  A summary of these tables is presented in 

Barton.317   

 

5.4.2.3 Hydrogen Bonding Solubility Parameter, δδh 

5.4.2.3.1 Difference Method 

In early tabulations of HSP’s, the hydrogen bonding parameter was almost always 

found by subtracting the sum of the polar and dispersion energies from the total energy of 

vaporization, so that 

 

 ( ) 2222
pdh δ−δ−δ=δ  (5-92) 

This is still widely used where the required data are available and reliable. 

 

5.4.2.3.2 Group Contribution Method 

Estimation methods based on group contribution are considered reasonably 

reliable for most of the required calculations.  Hansen and Beerbower,318 however, have 

determined that the group contribution method using molar attraction constants, as in 

eqn. (5-87) and eqn. (5-91), is not directly applicable to the calculation of δh.  Instead, 

they have assumed that hydrogen bonding contributions from structural units within a 

molecule to the overall molecular hydrogen bonding cohesive energy are additive, 

leading to  
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=δ ∑  (5-93) 

Caution is needed, however, in adding group contributions in the use of a single hydrogen 

bonding parameter to describe an interaction really requiring both donor and acceptor 

components.  Hydrogen bonding parameter group contributions, based on structural 

group, have been comprised by Koenhen and Smolders,319 van Krevelen,320 and Hansen 

and Beerbower.321  A summary of these tables is presented in Barton.322   

Figure 5-6 gives a summary of the methods for the determination of HSP values. 

 

Literature Values

Homomorph Method
Eqn. (5-84)

Index of Refraction Correlation
Eqn. (5-86)

Group Contribution Method
Eqn. (5-87)

Dispersion Solubility
Parameter

δd

Literature Values

Bottcher Equation
Eqn. (5-89)

Hansen/Beerbower equation
Eqn. (5-90)

Group Contribution Method
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Difference Method
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Group Contribution Method
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Total Solubility
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δ

Figure 5-6. Available methods for the calculation of Hansen solubility parameters δd, 

δp, δh. 
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5.4.3 Temperature and Pressure Effects 

Adjusting cosolvent HSP values for temperature and pressure effects will require 

obtaining either an EOS for the desired cosolvent, or reliable coefficient of thermal 

expansion (α) and isothermal compressibility (β) data.  Depending on which of the two 

methods is used, cosolvent HSP values can be adjusted using the derivative equations 

summarized in Table 5-8, or the integrated equations summarized in Table 5-9. 

 

5.5 Polymer Solubility Parameters 

5.5.1 1-Component Models (Hildebrand) 

 The solubility parameters of polymers can be evaluated directly from the heat of 

vaporization and eqn. (5-77) only for those polymers that can be vaporized.  However, as 

with the solvent and cosolvent (section 5.1.2 and 5.4.1), polymer solubility parameters 

can be approximated from calculation of the internal pressure, eqn. (5-12), along with 

suitable PVT data or EOS,   
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 (5-94) 

It has been observed, however, that the internal pressure of polymers measured 

above and below the glass transition temperature, Tg, shows unusual behavior.323  At 

temperatures above Tg, where the polymer is in the rubber state, the variation of internal 

pressure with temperature is qualitatively indistinguishable from the behavior shown by 
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other organic molecules.  However, as the temperature is lowered and Tg is reached, the 

internal pressure has been observed to drop, falling rapidly with decreasing temperature.  

Yet in passing through Tg, no sudden change in the magnitude of the internal pressure 

should be expected.324  This behavior is illustrated in Figure 5-7, where the internal 

pressure, Pi, is plotted against T from 20oC to 150oC for polymethylmethacrylate 

(PMMA).325   

 
 Additionally, internal pressure values have been calculated from eqn. (5-69) 
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 (5-95) 
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Figure 5-7.  The internal pressure of PMMA as a function of temperature.  Symbols:  
♦data of Allen, Sims and Wilson,326 ∆ data of Hellwege, Knappe and Lehmann,327 O 
calculated from solution data after Hansen328. 
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and α and β are determined from polymer PVT data.  Representative PVT data for 

PMMA, poly(vinyl butyral), and PC are shown in Figures 5-8, 5-9, and 5-10. 
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Figure 5-8.  Plots of standard PVT for PMMA (M = 1 × 105).329 
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Figure 5-9.  Plots of standard PVT Poly(vinyl butyral).330 
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From an examination of the PVT data plotted in Figure 5-8 through 5-10, 

noticeable “breaks”, or changes in slope, in the various isobars are observed for each of 

the polymers.  This change in slope represents the polymers glass transition (from rubber 

to glass on cooling).  Therefore, the data well to the left of the break represents PVT data 

for the polymer’s glass state, while the PVT data to the right of the break, represents data 

for the polymer’s rubber state.  Although not quantified at this time, it is apparent that the 

isobaric thermal expansion coefficient, α, decreases significantly, whereas the effect on 

the isothermal compressibility, β, is much less marked in the rubber-glass transition.332  

The lower values of α in the glass versus rubber state will also result in a lower internal 

pressure, for the glass, as calculated from eqn. (5-95). 

T (oC)

0 30 60 90 120 150 180 210 240 270 300 330

V
 (c

m
3 /

g)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

P = 0 MPa
P = 20 MPa
P = 40 MPa
P = 60 MPa
P = 80 MPa
P = 100 MPa
P = 120 MPa
P = 140 MPa
P = 160 MPa
P = 180 MPa
P = 200 MPa

 
Figure 5-10.  Plots of standard PVT for Polycarbonate.331 
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In considering the reason for this apparent decrease in internal pressure it is 

necessary to reconsider the concept of internal pressure, as utilized in this work, as an 

equilibrium quantity.  It is therefore applicable to materials, including polymers, only 

when local, internal equilibrium can be maintained, i.e., above Tg.   Internal pressure, as 

defined in section 4.1 has no meaning below Tg. It is therefore pointless to talk about the 

internal pressure (as defined here) of a polymer below Tg, since Tg represents the loss of 

internal degrees of freedom of the polymer matrix, and, at any temperature below Tg, the 

polymer is therefore in a nonequilibrium state.   

Experimental PVT data, such as shown in Figures 5-8 to 5-10, is available in the 

literature for some polymers.  One excellent source is a compilation by Zoller and 

Walsh.333  In the absence of extended tabulations of measured data, empirical models for 

the PVT behavior of polymers must be used.   The most widely employed equation for 

representing the PVT data for polymers is the Tait equation.334  The Tait equation relates 

the specific volume, V(P,T), in terms of the zero-pressure volume, V(0,T), and the Tait 

parameter, B(T), 

 
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The parameter C is often taken to be independent of temperature and pressure, and a 

universal value of 0.0894 is commonly assumed.  B(T) is parameterized as 

 ( )TBBTB o 1exp)( −=  (5-97) 

and the zero-pressure volume V(0,T) is parameterized by 
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 2
21),0( TATAATV o ++=  (5-98) 

where Bo, B1, Ao, A1 and A2 are material dependent parameters and T is in degrees 

Centigrade.   

The Tait equation provides a convenient means to compute the of thermal 

expansion coefficient, α, and isothermal compressibility, β, 
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where 
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This allows for calculation of the internal pressure, and the solubility parameter, using 

eqn.  (5-95). 

Application of the Tait equation, however, is restricted to polymers where the 

parameters Ai, Bi have been regressed from experimental data, since no methods are 

currently available to estimate them from chemical structure.  Tabulated values are 

currently available for 56 polymers.335  

A variety of other empirical equations have been proposed to describe the PVT 

behavior of polymers, although none of these equations have been used as extensively as 
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the Tait equation.  These equations will be briefly mentioned here, along with a reference 

containing more detailed discussions. 

 

1. Spencer and Gilmore336 modified the van der Waals equation of state for 

polymers, employing a constant value for the internal pressure instead of 

the van der Waals’ attractive term 







2V

a
, 

 ( )( ) RTVP =−+ ωπ  (5-102) 

where P is the external pressure, π  is the internal pressure, V is the 

volume, and ω is the polymer volume at absolute zero temperature.  The 

Spencer-Gilmore equation is a very simple two-parameter equation, 

however, it has only been applied with moderate success to a limited 

number of polymers.337 

 

2. Weir338 developed an empirical isobaric equation to describe the PVT 

relationship of polymers.  Along an isobar, the volume is expressed as a 

polynomial equation in temperature 

 ( ) ( ) ( )[ ]22
21

2
21

2
21 111 TPcPcTPbPbPaPaVV o ++++++++=  (5-103) 

where Vo is the specific volume at 21oC, ai, bi and ci are material constants 

of the polymer.  The Weir equation, with its 10 undetermined coefficients, 

is cumbersome to use.  Furthermore, it is also noted to be less accurate 

than the Tait equation.339  
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3. Whitaker and Griskey340 observed that at any given temperature, the 

correlation between the compressibility factor, i.e. RTPV , and a reduced 

temperature, gTT , resulted in a family of curves that can be collapsed 

into a single master curve.  Their equation for this corresponding states 

curve is 
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where n and m are universal parameters for all polymers that depend on 

pressure and are given graphically in the original article.  Consequently, 

only the polymer density at 25oC and 1 atm, ρo, and the glass transition 

temperature, Tg, are needed to estimate the temperature and pressure 

dependent specific volume.  Although the Whitaker-Grisky equation has 

limited predictive capability if ρo and Tg of the polymer are known, it does 

not have the accuracy offered by the other empirical PVT equations.341 

 

4. Hartman and Haque342 derived an equation of state by combining the 

theoretical temperature dependence of thermal pressure from Pastine and 

Warfield343 with the zero pressure isobar of the Simha-Somcynsky344 

equation of state and an empirical volume dependence of the thermal 

pressure.  The equation, in reduced form, is given by  

 VTVP
~

ln
~~~ 2/35 −=  (5-105) 
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where  
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and Po, Vo, and To are the reducing parameters.  Po is the isothermal bulk 

modulus extrapolated to zero temperature and pressure, Vo is the polymer 

liquid volume extrapolated to zero temperature and pressure, and To is 

defined implicitly from the relation ( ) ( ).0,0, VTPV oo =  The Hartman-

Haque equation is a relatively new but promising empirical equation of 

state with only three parameters and has an accuracy comparable to the 

Tait equation.  Both the Tait and Hartman-Haque equations have been 

evaluated for a variety of polymers.345 

 

 Other correlation methods can also be utilized for determining polymer solubility 

parameter values.  As with solvent and cosolvent, a polymer internal pressure can be used 

as an approximation of the cohesive energy density and δ2.  Correlations between internal 

pressure and cohesive energy density have also been evaluated for polymer systems.  A 

theoretical derivation by Voeks346 resulted in  

 3.1≈=








 ∆










∂

∂

n

V
E

V
E

T  (5-107) 



 5-113 
 

Where the internal pressure and cohesive energy density are again related by the quantity 

n (see eqn. 4-18). 

 Values of internal pressure and cohesive energy density for a number of polymers are 

compared in Table 5-10,347 which shows eqn. (5-107) to be a valid first approximation. 

   
 
 Another method to estimate total solubility parameters of polymers is based on 

surface tension.  Since surface tension is a direct manifestation of intermolecular forces, 

it may therefore be expected that a relation exists between surface tension and cohesive 

energy density.   The relationship is348 

 
75.0

2/3
2 γ

δ ≈  (5-108) 

Table 5-10.  Comparison of internal pressure and cohesive energy density of polymers at 
20oC. 

Polymer 

TV
E










∂

∂
 

(bar) 

( )
TV

E∆  

(bar) 

n 

Polyethylene 3200 2500/2900 1.3/1.1 
Polyisobutylene 3300 2500/2700 1.3/1.2 
Polystyrene 4600 3000/3600 1.5/1.3 
Polyvinyl acetate 4300 3600/5100 1.2/0.8 
Polyethyl acrylate 4400 3500/3700 1.3/1.2 
Polymethyl methacrylate 3800 3400/6900 1.1/0.6 
Polypropylene oxide 3700 2300/4200 1.6/0.9 
Polydimethyl siloxane 2400 2200/2400 1.1/1.0 
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where γ is in mJ/m2 and δ2 is in J/cm3. Values of surface tension for polymer melts have 

been determined and are available in the literature.  According to Macleod’s relation, the 

surface tension varies with density according to349 

 koργ=γ  (5-109) 

where oγ and κ are constants, independent of temperature.  The κ is known as Macleod’s 

exponent, and usually has a value of 3.0-4.5 for polymers350.  Alternatively, the 

interfacial energy of solid polymers may be calculated from an additive function, known 

as the parachor, by applying the following equation. 

 
4









=

V
Psγ  (5-110) 

where Ps is the parachor parameter and V is the molar volume of the repeat unit.  

Parachor atomic and structural contribution constants were originally introduced by 

Sugden351 and later modified by Mumford and Phillips,352 and by Quayle.353  The group 

contributions to the parachor as presented by different investigators are given in Table 5-

11.354 
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In Table 5-12, polymer solubility parameter values obtained in the literature are 

compared with values calculated from the polymer surface tension, eqn (5-108) and 

eqn. (5-110). 

Table 5-11.  Atomic and structural contribution to the Parachor. 

Values assigned by [(cm3/mol) x (mJ/m2)1/4] Unit 

Sugden Mumford and 
Phillips 

Quayle 

CH2 39.0 40.0 40.0 
C 4.8 9.2 9.0 
H 17.1 15.4 15.5 
O 20.0 20.0 19.8 
O2 (in esters) 60.0 60.0 54.8 
N 12.5 17.5 17.5 
S 48.2 50.0 49.1 
F 25.7 25.5 26.1 
Cl 54.3 55.0 55.2 
Br 68.0 69.0 68.0 
I 91.0 90.0 90.3 
Double bond 23.2 19.0 16.3-19.1 
Triple bond 46.4 38.0 40.6 
3-membered ring 16.7 12.5 12.5 
4-membered ring 11.6 6.0 6.0 
5-membered ring 8.5 3.0 3.0 
6-membered ring 6.1 0.8 0.8 
7-membered ring  -4.0 4.0 
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Table 5-12.   Polymer surface tension and solubility parameters. 

Surface Tension 
mJ/m2 

Solubility Parameter  
MPa1/2 

Polymer 

Observed Calculated 
from Ps 

Eqn. (5-108) 
Lit.  γ 

Eqn. (5-110) 
from Ps 

Lit. 

Polytetrefluoro 
ethylene 

18.5 26 10.3 13.3 13.1 

Poly(dimethyl 
siloxane) 

24 21.5 12.5 11.5 14.9 

Polyisobutylene 27 30.5 13.7 15.0 16.3 
Polypropylene 29 32.5 14.4 15.7 16.6 
Polyethylene 31 31.5 15.2 15.3 16.5 
Poly(vinyl 
acetate) 

37 40 17.3 18.4 19.2 

Poly(vinyl 
alcohol) 

37 59 17.3 24.6 25.6 

Poly(ethylene 
terephthalate) 

41.5 49 18.9 21.4 21.7 

Poly(methyl 
methacrylate) 

39 42 18.0 19.0 22.4 

Poly(vinyl 
chloride) 

39 42 18.0 19.0 19.4 

Polycarbonate 45 42.5 20.1 19.2 20 
Poly(vinyl 
butyral) 

38 - 16.6 - 23 

 

 Another polymer property that shows a general correlation with cohesive energy 

is the glass transition temperature, Tg. It is generally observed that there is an 

approximately linear dependence of Tg on cohesive energy density, so that polymers with 

high values of Tg tend to have high (Hildebrand) total solubility parameters.355  Although 

there is no direct mathematical relationship, Table 5-13 illustrates the general trend (with 

the exception of poly(vinyl alcohol), and poly(vinyl butyral)) in polymer glass transition 

values and solubility parameters.  
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Table 5-13.  Polymer glass transition temperatures and solubility parameters. 

Polymer Tg (°°C)356,357 δδ, (MPa)1/2  358 
Poly(dimethyl siloxane) -128 14.9 
Polyethylene -125 16.4 
Natural rubber -72 16.6 
Polybutadiene -25 17.6 
Poly(tetrafluoroethylene) 27 13.1 
Poly(vinyl acetate) 30 19.3 
Poly(vinyl butyral) 51 23.1 
Poly(ethyl methacrylate) 66 18.6 
Poly(ethylene terephthalate) 69 21.8 
Poly(vinyl chloride) 75 19.4 
Poly(vinyl alcohol) 85 25.6 
Poly(methyl methacrylate) 105 18.8 
Polycarbonate 148 20.0 

 

 

5.5.2 Calculation of Polymer HSP’s 

Hansen’s original solubility parameter work was developed out of studies into 

film drying and solvent retention, the phenomenon that solvent can be found in many 

paint and varnish films years after their application.  The assumption was that hydrogen 

bonding between the solvent and polymer molecules was responsible for this retained 

solvent.  Although this assumption was ultimately found to be false, the statement that 

hydrogen bonding had no significant effect on solvent retention without defining 

hydrogen bonding was not satisfactory for Hansen.  Therefore, in order to better define 

hydrogen bonding and polar bonding, Hansen initiated a study based on the Hildebrand 

solubility parameter.  This study eventually led to the concept of a three dimensional 

solubility parameter,359 a concept that has gone on to become an important tool for the 

study of solubility, swelling, and other physical interactions between polymers and 

solvents.  For this reason, extensive compilations exist of total solubility parameters and 
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dispersion and polar HSP’s for polymers. Also, hydrogen-bonding HSP’s have been 

determined from turbidimetric titrations of solubility in solvents and from swelling of 

polymers in solvents, where the solvent has been previously characterized for its HSP’s. 

Because many polymers are amorphous and, therefore, “liquid-like” in some of 

their properties, their solubility behavior can be treated by many of the methods used for 

liquids.  For this reason, the correlations developed in Section 5.4.2 for cosolvents, are 

also applicable for polymers.     

 

5.5.2.1 Dispersion Solubility Parameter, δδd 

Two of the relations discussed in Section 5.4.2.1 can be utilized for polymers: the 

index of refraction correlation and the group contribution method. 

5.5.2.1.1 Index of refraction (nD) Correlation 

Koenhen and Smolder360 predicted δd for several polymers using the index of 

refraction, nD, 

 
)(MPa     4.11n5.19

)cal/cm(    55.5n55.9
1/2

D

2/13
DD

−=

−=δ
 (5-111) 

 

5.5.2.1.2 Group contribution method 

As discussed earlier for cosolvent HSP’s, this method provides a quick estimate 

of the dispersion parameter (a similar approach has been developed for the polar and 
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hydrogen HSP’s) based on a summing of the contributions of individual structural units 

within the molecule to the total dispersion energy 

 
V

Fid
d

∑
=δ  (5-112) 

where Fid is the molar attraction constant for dispersion forces of a specific group i.  

Molar attraction constants have been derived by Koenhen and Smolders,361 van 

Krevelen,362 and Hansen and Beerbower.363  A summary of these tables is presented in 

Barton.364 

 

5.5.2.2 Polar Solubility Parameter, δδp 

Two of the relations discussed in Section 5.4.2.2 can be utilized for polymers: the 

Hansen/Beerbower equation and the group contribution method. 

5.5.2.2.1 Hansen/Beerbower Equation  

If the dipole moment of the polymer is known, eqn. (5-113) can be used to predict 

δp.  The measured average dipole moments of polymers are generally 70-90% of the 

dipole moment of the corresponding monomer unit, therefore for polymer µ values not 

found in the literature, an estimated dipole moment of 80% of the dipole moment of the 

monomer is recommended,365 so that 

 ( ) 21

21
437 /

/P MPa
V

.
µ

=δ   (5-113) 
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5.5.2.2.2 Group Contribution Method 

When the dipole moment of a molecule is unknown, group contributions can be 

used to estimate the polar solubility parameter. 

 
V

Fip

p

∑
=δ

2

 (5-114) 

Molar attraction constants have been derived by Koenhen and Smolders,366 van 

Krevelen,367 and Hansen and Beerbower.368  A summary of these tables is presented in 

Barton.369   

 

5.5.2.3 Hydrogen Bonding Solubility Parameter, δδh 

5.5.2.3.1 Difference Method 

In the earlier tabulations, the hydrogen bonding parameter was almost always 

found by subtracting the sum of the polar and dispersion energies from the total energy of 

vaporization, so that 

 ( ) 2222
pdh δ−δ−δ=δ  (5-115) 

This is still widely used where the required data are available and reliable. 
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5.5.2.3.2 Group Contribution Method 

As with the calculation of δh for cosolvents, Hansen and Beerbower have assumed 

that the contribution of individual molecular subunits to the total hydrogen bonding 

cohesive energy are additive, leading to  
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Hydrogen bonding contributions, based on structural group, have been compiled by 

Koenhen and Smolders,370 van Krevelen,371 and Hansen and Beerbower.372  A summary 

of these tables is presented in Barton.373   

In Figure 5-11 a summary of the methods for determining polymer HSP values is 

shown. 

 

Literature Values

Index of refraction correlation
Eqn. (5-111)

Group Contribution Method
Eqn. (5-112)

Dispersion Solubility
Parameter

δd

Literature Values

Hansen/Beerbower equation
Eqn. (5-113)

Group Contribution Method
Eqn. (5-114)

Polar Solubility
Parameter

δp

Literature Values

Difference Method
Eqn. (5-115)

Group Contribution Method
Eqn. (5-116)

Hydrogen-Bonding Solubility
Parameter

δh

Total Solubility
Parameter

δ

 
Figure 5-11.  Diagram of the components, δd, δp, δh, to the total Hansen solubility 

parameter, δ, and methods for their determination.  
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5.5.3 Temperature and Pressure Effects 

Adjusting polymer HSP values for temperature and pressure effects can be 

approached in several ways.  One option is the use of published PVT data for the given 

polymer and using the equations developed in Section 5.3 and summarized in Table 5-9.  

Alternatively, the coefficient of thermal expansion and the isothermal compressibility in 

the rubber state, along with the equations developed in Section 5.3 and summarized in 

Table 5-8 can be used.  Lastly, empirical equations of state (such as the Tait equation) 

can be used to generate the necessary PVT data or α and β for use in either the derivative 

or integrated equations.  All of these approaches, however, are applicable only to PVT 

states in the polymer’s rubber phase.  

 
 


